Precipitation Module (TC-PRISMA) References

[1938Bec] R. Becker, Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Ann. Phys. 424, 128–140 (1938).

[1948Smi] C. S. Smith, Grains, Phases, and Interfaces - an Interpretation of Microstructure. Trans. AIME. 175, 15–51 (1948).

[1949Wer] C. A. Wert, Precipitation from Solid Solutions of C and N in α-Iron. J. Appl. Phys. 20, 943 (1949).

[1953Hil] Hillert, M. Paraequilibrium. Internal Report, Swedish Institute for Metals Research (1953).

[1955Cle] P. J. Clemm, J. C. Fisher, The influence of grain boundaries on the nucleation of secondary phases. Acta Metall. 3, 70–73 (1955).

[1957Esh] J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241, 376–396 (1957).

[1956Cah] J. W. Cahn, Transformation kinetics during continuous cooling. Acta Metall. 4, 572–575 (1956).

[1957Fel] P. Feltham, Grain growth in metals. Acta Metall. 5, 97–105 (1957).

[1958Ham] F. S. Ham, Theory of diffusion-limited precipitation. J. Phys. Chem. Solids. 6, 335–351 (1958).

[1958Kir] J. S. Kirkaldy, Diffusion in Multicomponent Metallic Systems: I. Phenomenological Theory for Substitutional Solid Solution Alloys. Can. J. Phys. 36, 899–906 (1958).

[1959Esh] J. D. Eshelby, The Elastic Field Outside an Ellipsoidal Inclusion. Proc. R. Soc. A Math. Phys. Eng. Sci. 252, 561–569 (1959).

[1959Ham] F. S. Ham, Shape-preserving solutions of the time-dependent diffusion equation. Q. Appl. Math. 17, 137–145 (1959).

[1965Hil] M. Hillert, On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965).

[1965Joh] C. A. Johnson, Generalization of the Gibbs-Thomson equation. Surf. Sci. 3, 429–444 (1965).

[1966Fed] J. Feder, K. C. Russell, J. Lothe, G. M. Pound, Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111–178 (1966).

[1970Aar] H. B. Aaron, Diffusion-Limited Phase Transformations: A Comparison and Critical Evaluation of the Mathematical Approximations. J. Appl. Phys. 41, 4404 (1970).

[1975Hel] P. Hellman, M. Hillert, On the Effect of Second-Phase Particles on Grain Growth. Scand. J. Metall. 4, 211–219 (1975).

[1980Lan] J. S. Langer, A. J. Schwartz, Kinetics of nucleation in near-critical fluids. Phys. Rev. A. 21, 948–958 (1980).

[1980Sak] T. Sakuma, N. Watanabe, T. Nishizawa, The Effect of Alloying Element on the Coarsening Behavior of Cementite Particles in Ferrite. Trans. Japan Inst. Met. 21, 159–168 (1980).

[1983/2013Kha] A. G. Khachaturyan, Habit Plane and Orientation Relations in Precipitates: Comparison with Experimental Data. In Theory of Structural Transformations in Solids, 299–305. Mineola, New York: Dover Publications, Inc.

[1988Hil] M. Hillert, Inhibition of grain growth by second-phase particles. Acta Metall. 36, 3177–3181 (1988).

[1991Kam] R. Kampmann, R. Wagner. "Homogeneous second phase precipitation". In R. W. Cahn, P. Haasen, & E. J. Kramer (Eds.), Materials Science and Technology (pp. 213–304). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA (1991).

[1993Che] M. K. Chen, P. W. Voorhees, The dynamics of transient Ostwald ripening. Model. Simul. Mater. Sci. Eng. 1, 591–612 (1993).

[1993Uma] A. Umantsev, G. B. Olson, Ostwald ripening in multicomponent alloys. Scr. Metall. Mater. 29, 1135–1140 (1993).

[1994Mor] J. E. Morral, G. R. Purdy, Particle coarsening in binary and multicomponent alloys. Scr. Metall. Mater. 30, 905–908 (1994).

[1995Mor] J. E. Morral, G. R. Purdy, Thermodynamics of particle coarsening. J. Alloys Compd. 220, 132–135 (1995).

[1998Man] P. A. Manohar, M. Ferry, T. Chandra, Five Decades of the Zener Equation. ISIJ Int. 38, 913–924 (1998).

[2000Kas] D. Kashchiev. Nucleation, (Butterworth-Heinemann, 2000).

[2003Ona] S. Onaka, N. Kobayashi, T. Fujii, M. Kato, Energy analysis with a superspherical shape approximation on the spherical to cubical shape transitions of coherent precipitates in cubic materials. Mater. Sci. Eng. A. 347, 42–49 (2003).

[2004Iwa] S. Iwamura, Y. Miura, Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater. 52, 591–600 (2004).

[2004Jou] H.-J. Jou, P. Voorhees, G. B. Olson, Computer simulations for the prediction of microstructure/property variation in aeroturbine disks. Superalloys, 877–886 (2004).

[2004Svo] J. Svoboda, F. D. Fischer, P. Fratzl, E. Kozeschnik, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates. Mater. Sci. Eng. A. 385, 166–174 (2004).

[2004Yu] C. Y. Yu, P. L. Sun, P. W. Kao, C. P. Chang, Evolution of microstructure during annealing of a severely deformed aluminum. Mater. Sci. Eng. A. 366, 310–317 (2004).

[2004Zan] L. Zang, "Lecture 13: Heterogeneous Nucleation: Effects of Grain Boundaries and Surface Defects". Lecture slides, Salt Lake City, Utah: The Zang Research Group, The University of Utah. Retrieved from http://www.eng.utah.edu/~lzang/images/lecture-13.pdf

[2008Che] Q. Chen, J. Jeppsson, J. Ågren, Analytical treatment of diffusion during precipitate growth in multicomponent systems. Acta Mater. 56, 1890–1896 (2008).

[2008Jep] J. Jeppsson, J. Ågren, M. Hillert, Modified mean field models of normal grain growth. Acta Mater. 56, 5188–5201 (2008).

[2008Kni] K. E. Knipling, D. C. Dunand, D. N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Mater. 56, 114–127 (2008).

[2008Lee] S.-J. Lee, Y.-K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels. Mater. Des. 29, 1840–1844 (2008).

[2008Sud] C. K. Sudbrack, T. D. Ziebell, R. D. Noebe, D. N. Seidman, Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater. 56, 448–463 (2008).

[2008Ran] V. Randle, P. R. Rios, Y. Hu, Grain growth and twinning in nickel. Scr. Mater. 58, 130–133 (2008).

[2014Che] Q. Chen, K. Wu, G. Sterner, P. K. Mason, Modeling Precipitation Kinetics During Heat Treatment with Calphad-Based Tools. J. Mater. Eng. Perform. 23, 4193–4196 (2014).

[2016Hou] Z. Hou, P. Hedström, Q. Chen, Y. Xu, D. Wu, J. Odqvist, Quantitative modeling and experimental verification of carbide precipitation in a martensitic Fe–0.16wt%C–4.0wt%Cr alloy. Calphad. 53, 39–48 (2016).

[2018Wu] K. Wu, Q. Chen, P. Mason, Simulation of Precipitation Kinetics with Non-Spherical Particles. J. Phase Equilibria Diffus. 39, 571–583 (2018).